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A b s h d .  ?he X-J model is a strongzoupling Limit of both lhe ~ l u r a l  tighf binding 
model d pemvskite supermnductors and lhe Anderson lattice model of heay. fermions. 
The application of the model lo perowkite supercmductivity is straighttonvard, bur 
is use to describe heay fermions is more speculative. ?he straighl-line motion of 
charge carriers in the model is sympathetic to antiferromagnetic mrrelations along the 
path Lraversed, although Ihe motion destroys the long-range anlifenomagnetic order by 
=changing the WO sublattices in passing. Antiferromagnetism is desmyed in both lhe 
square laltice geometry relevant to a CuOz plane and the triangular geometry relevanl 
to an isolated layer of CeAh. A paramagneuc phase uith shoner range rrrelations 
than suggested by the Heisenberg model seems prefemd by lhe chargecarrier motion 
in these two-dimensional fxamples. 

1. Introduction 

The theoretical study of high-temperature superconductivity involves the analysis of 
charge carriers in systems with atoms which have lost almost all of their valence 
fluctuations. For most perovskite superconductors there is a parent compound which 
is an antiferromagnetic insulator. The moment resides on copper atoms in a CuO, 
layer whieh have an atomic CuZt configuration with on,$ hole in their unfilled d- 
shells carrying spin-$. It is this copper atom which has lost almost all of its valence 
fluctuations, the only remnant being the superexchange interaction between nearest 
neighbours, probably involving virtual Cut excitations. Superconductivity is achieved 
by doping extra holes into the CuO, layer. It is believed that these extra holes 
reside dominantly on oxygen a t o m  and therefore that the copper atom valence is 
not significantly altered. The almost immediate loss of antiferromagnetism with hole 
doping suggests, however, that the charge motion is intimately coupled to the virtual 
copper valence fluctuations. Atso, a comparison between NMR on copper and oxygen 
atoms suggests that the same excitation is being probed by NMR on either atom and 
hence that excitations are spread across both atoms. One model for this system 
presently under investigation is the 1-J model [I], but we will study a similar but 
slightly different model; the X-J  model 121. 

A second collection of systems with atoms whieh have lost almost all their valence 
fluctuations are the heavy fermion systems [3]. For these systems the atom with 
restricted valence (called the ‘special atom’) is cerium (we Will ignore uranium in 
this article) which has a single f-electron in a Ce3t core. Again it is charge motion 
which is central to the theoretical analysis. The charge carriers near the Fermi 
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surface become coupled to the cerium sites through virtual Ce'+ excitations and the 
materials exhibit quite bizarre properties. As well as the enormow effective masses, 
these materials do not exhibit the magnetism to be expected for rare earth compounds 
and, further, CeCu,Si, is a superconductor with a remarkably small coherence length 
[4] by analogy with the perovskite superconductors. We believe that these systems 
should also be modelled by the X-J model which is a strongcoupling limit of the 
usual description; the Anderson lattice [5]. 
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Ca A I  Cc AI Ce AI  CI AI Ce 
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Fqurc L "Ihe square lattice geometly of a CUDz layer and the triangular lattiee geometty 
of a CeA13 layer. ?he CuOz layers are [airly wll fflsulaled h m  each other but the 
CeAIJ layen are strongly mupled 

We believe that the two planar geometries depicted in figure 1 are the basic 
geometries from which an understanding of CuO, and CeAJ, can be deduced. The 
.Y-J model can be used to describe both systems, although for the CuO, system 
we describe holes whereas for &AI3 we describe electrons. Restricting attention to 
hybridization between atoms the X-J model is 

where d l ,  is an operator which creates a particle on the atom with restricted valence 
while p j m  creates a particle on the surrounding atoms. The fust term corresponds 
to the motion of the mobile charge carrier across a special atom by an intermediate 
valence fluctuation on that special atom. The second term corresponds to Heiscnberg 
superexchange between two special a tom with Si = ~ ~ u u , d ~ u P u ' d i ~ ,  being a 
spin operator and 6 being Pauli matrices. The phase factors -$;j have been included 
in order to a m u n t  for the angular variation of the relevant orbitals for the electrons 
on the special atoms. Both the d-orbitals and f-orbitals yield oscillations in phase, 
four nodes for the d-orbitals and six nodes for the f-orbitals. We are free to choose 
the relative phase between orbitals on different atoms in any way we like, but the 
choice around closed loops is  frred by the changes in phase encountered in circling 
the loop. For the bipartite gcometry of the peromkite superconductors the phases 
may be consistently chosen to vanish. The choice for CeAI, is not so clear but is 
crucial as we will argue later. 

Although for the perowkite superconductors the coherence between charge car- 
riers is the most important problem, we will not address this issue but will study the 
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coherence amongst the spins on the special atoms instead. The magnetism, or lack 
of it, can be understood by a study of one charge carrier in interaction with the spin 
system, and it seems plausible that an understanding of one charge carrier is a pre- 
requisite to the study of two. For CeAI, however, the reason for the paramagnetism 
of the spin system is a central issue. 

In a recent publication it was pointed out that charge motion in the X-J model 
promotes low-spin correlations amongst the spins in the system [Z]. This is contrary 
to the usual behaviour in strongly correlated systems. Nagaoka ferromagnetism is 
normally to be expected. A study of the linear chain was used to demonstrate the 
effect, but one important issue was left unresolved; what are the long-range properties 
of the spin correlations induced by the charge carrier? A cursory examination of [2] 
might suggest a broken symmetry for the ground state. In section 2 we address the 
question numerically and show that the charge motion induces essentially identical 
correlations to the Heisenberg interaction for the linear chain. In section 3 we present 
a simplistic description of CeAI, showing how to describe the system with the X-J 
model and how paramagnetism may well be preferred. Numerical results for the 
triangular and square lattices are presented in sections 3 and 4 respectively, and a 
simple analytic interpretation is supplied in section 5. In section 6 we conclude. 

2. The X-J model on a linear chain 

It was established in a recent article that charge-carrier motion in the X-J model 
prefers low-spin correlations [Z]. In a search for more understanding of the model, we 
have performed a numerical investigation of the linear chain geometry of alternating 
special atoms and conduction atoms, in order to hy to establish the character of the 
long-range spin correlations of the model, and hence to deduce the likely form of the 
low lying excitations; is the spectrum gapped? 

We performed exact diagonalization studies on systems with up to 20 spins using 
the Lannos algorithm. The convergence is poor with several hundred basis states 
required for a good description of the ground-state correlations; as is to be expected 

A finite-size scaling anatysis of the ground-state energy for one charge carrier 
in the absence of Heisenberg interactions is depicted in figure 2. We Iind clear 
convergence to a value of -2887X which is within 1% of our previous analytic 
estimate based on a basis of only eight variational states [2]. 

The even-membered chains have an extra spin-$ which we assume forms a ‘spinon’ 
complicating the picture. As pointed out in our previous work [Z], with periodic 
boundary conditions there is an alternation in ground-state energies as the length of 
an odd chain is increased. However when we consider antiperiodic boundary condi- 
tions we find the complementary states to those with periodic boundary conditions. 
For the even-membered chains depicted in figure 2, there are clearly two classes of 
states being scaled. The lower culve has spin-0 while the upper curve has spin-1. The 
surprise is that the states corresponding to a particular class correspond to nllemaring 
choices of boundary conditions. When we consider higher dimensional geometries, 
the spin correlations on particular loops that optimize particle motion will depend 
upon the local boundary conditions, which in turn are controlled by the topological 
phase factors & j .  Since for the upper class we require total spin-I around the loop, 
strong paramagnetism is only predicted when the boundary conditions correspond to 

[61. 
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the lower class. There is always the possibility of strong local paramagnetic correla- 
tions for any odd-membered loop; for loops of length 1 modulo 4 we require periodic 
boundary conditions while for loops of length 3 modulo 4 we require antiperiodic 
boundary conditions. Both possibilities can be physically significant as is pointed out 
in the next section, In our previous paper [Z], we pointed out that the basic reason 
for this alternation in ground-state energy was associated with whether or not there 
was a resonant or cancelling superposition of the two states where all spins were 
paired into nearest-neighbour singlets. We will maintain this description. 

We now move on to our study of the spin correlations induced by the charge- 
carrier motion. The ground state spin correlations in the absence of Heisenberg 
interactions can be readily understood in terms of a Heisenberg ground state! The 
comparison is complicated by the fact that one system has a charge carrier and 
the other does not. Further, the charge camer is fully delocalized and the spin 
correlations depend on the behaviour of the charge carrier. For the ground state with 
the charge carrier delocalized, we have determined the conditional spin correlations 
subject to the charge carrier being found on a fixed atom and compared these with 
a system without any charge carriers. The conditional spin correlations for a certain 
chain are very similar to the Heisenberg ground-state correlations for a chain with 
one extra atom. The charge carrier itself has a spin and this spin participates in the 
spin correlations on an equal footing with the spins on the special atoms. 

The X-model ground states with the resonant superposition are total spin-0 states 
whereas the X-model ground states with a cancelling superposition are total spin- 
1 states and must be compared with a Heisenberg state with one spin wave. The 
Heisenberg energies are compared in table 1, and there is clearly an enormous 
similarity and overlap between the two states. A comparison of the two types of 
correlations shows that the difference occurs in the near Vicinity of the charge carrier, 
where the probability of finding the charge carrier in a relative spin singlet with its 
two neighbouring spins is enhanced. 

Thesc results may be readily understood in terms of an interpretation of the 
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Tabk I A wmparison behvem the mnditional Heisenberg energy of lhe ground suk 
of the Xmodel  and the energies of lhe ground slates and some low Mng excitations of 
the Heisenberg model. A &in of length N plus one charge carrier is wmpamd uith a 
Heisenberg chain of length N + 1. The Heisenberg ground sfales are rslricted to the 
subspace with identical @tal spin U) lhe X-model ground state, and the excited State is 
the lowesl @up state also with the same quantum numben. TXe X-model gmund sulc 
clearly almost simultaneously diagonalize the Heisenberg model. 

N BCS S X-model Heisenberg Heisenberg H e i s e n k g  
ground- energy of ground- =cited- 
state X-model skate state 
energy sute  energy energy 

3 AP 0 
3 P 1 
4 P 1R 
5 P 0 
5 AP 1 
6 P 1R 
7 AP 0 
7 P 1 
8 P 1R 
9 P 0 
9 AP 1 
10 P U2 
11 AP 0 
11 P 1 
12 P vz 
13 P 0 
13 AP 1 
14 P 1R 
15 AP 0 
15 P 1 
16 P vz 
17 P 0 
17 AP 1 
18 P vz 
19 AP 0 
19 P 1 
20 P 1R 

-3.oooo 
-25616 
-26458 
-2.9254 
-27913 
-28095 
-2.9083 
-2.8478 
-2.8356 
-29023 
-28689 
-2.8673 
-28996 
-2.8788 
-28702 
-28982 
-28842 
-2.8816 
-2.8973 
-28873 
-28817 
-2.8968 
-28894 
-2.8872 
-28965 
-28907 
-28869 

-2woo 
-0.8638 
-1.7817 
-27760 
-1.9361 
-2.6781 
-3.6106 
-29669 
-3.7083 
-4.4681 
-3.9511 
-4.5940 
-5.3356 
-4.9069 
-5.5480 
-6.2095 
-5.8424 
-6.4314 
-7.0854 
-6.7657 
-7.3567 
-7.9622 
-7.6820 
-8.2410 
-8.8436 
-8.5901 
-9.1528 

-2.I” 
- 1.woo 
- 1.8680 
-28028 
-21180 
-2.8552 
-3.6511 
-3.1284 
-3.7974 
-4.5154 
-4.0922 
-4.7190 
-5.3874 
-5.0315 
-5.6296 
-6.2635 
-5.9564 
.-6.5337 
-7.1423 
-6.8721 
-7.4336 
-8.0228 
-7.7815 
-83305 
-8.9044 
-8.6864 
-9.2254 

OaDOo 

-0.75W 
-1.5000 

- 1.8062 
-2.6996 

-29361 

- 

- 

- 

-3.7706 
- 

-3.9920 
-4.7774 

-5.0019 
-5.7481 

-5.9818 
-6.6966 

-6.9414 
-7.6305 

-7.8865 
-8.0725 

-8.8210 

- 

- 

- 

- 

- 

Hamiltonian. The X-model may be rearranged to form an exchange between the 
charge-carrier spin and its nearest-neighbour spins, combined with an exchange where 
the charge carrier simultaneously moves [7l. In the near Vicinity of the charge there 
is a small enhancement of the singlet correlations making use of the static exchange 
where the charge carrier does not move, but the dominant long-range effect comes 
from motion along the chain which decides the more distant correlations. When 
the particle arrives it desires a high probability of being in a relative spin singlet 
with its two neighbours. By definition, the highest probability of finding nN nearest- 
neighbour spins simultaneously in relative singlets is achieved by the ground state of 
the Heisenberg Hamiltonian, and far from the charge carrier this constitutes precisely 
the correlations found. 

Although the ground state of the infinite Heisenberg chain has no long-range 
order, it does have p e r  law decay of Nee1 correlations, and these correlations 
are strong enough to yield most of the properties to be expected of classical 
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antiferromagnetism; gapless spin-wave stcitations and gapless spin spirals. We have 
compared conditional spin correlations under the assumption that the charge carrier 
is on a futed atom, and in fact the charge carrier is fully delocalized. The motion of 
the charge carrier daroys the antiferromagnetic correlations. 

An understanding of the spin correlations in the ground state is achieved through 
an analysis of the conditional spin correlations. Unfortunately these spin correlations 
are not those measured in most experiments, including neutron scattering. A neutron 
scatters off the spin density on the special atoms, but the relevant spin correlations are 
those averuged over the motion of the charge carriers; unconditional spin correlations. 
In order to understand the measured or 'actual' spin correlations on the special 
atoms, we must study the unconditional spin correlations between pairs of special 
atoms, averaged over the motion of the charge carrier. If we pick two special atoms, 
then the loop is cut into two segments. The relative orientation of the two spins on 
these atoms depends on the position of the charge carrier. On average the relative 
orientation of the two spins is in opposite directions when the charge carrier lies on 
one side of the loop compared with when it resides on the other side. The spin 
correlations are reduced by a factor reflecting the fraction of time that the charge 
carrier lies between the two relevant spins. Spins on opposite sides of the ring are 
decorrelated by the charge carrier, and only spins much closer together retain the 
antiferromagnetic correlations. 

! ""L , , I 1 11.115 

1 4 6 B c ,I I ,  ,s 

F w m  3. (U )  Nearest-neighbour spin wrrelations wndilional on the charge carrier k i n g  
on a ked atom versus distance away [mm the charge carrier. We have used a l'l-atom 
chain with periodic boundan/ conditions, and the spin on the &axe carrier is included 
as one of the spins. ?he WO strongest singlet mrrelatioiw involve the charge carrier, 
and the correlations for the ground state of the 18-atom Heisenberg chain, denoted by 
(o), have been plotled for comparison. (b) m e  actual spin wmelations on the special 
atoms wrsus separation of lhe spins. The chargecamer motion has been averaged over 
and has dmrrelated the more dislanl spins. The spin wrrelations for lhe sound stale 
of a 17-atom Heisenberg chain, depicted Ly (a), have teen plotted for wmpakon. 

-OSO a ).I I 7.5 io (2.1 1s 17,s 
.a., 

In figure 3 we depict a selection of spin correlations for a system of 17 atoms. The 
conditional spin correlations are seen to be very similar to those for the Heisenberg 
chain of eighteen atoms. The actual spin correlations averaged over the chargecarrier 
position die out quite quickly, but strangely they do resemble the correlations of a 
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Heisenberg chain of 17 atoms. Fbr an odd-membered Heisenberg chain the total 
spin must be at least a half. This excess spin may be considered as a spinon; a type 
of chargeless quasiparticle [SI. It is this spinon which decorrelates the spins on an 
odd-membered Heisenberg chain in an analogous way to the way the charge carrier 
decorrelated the spins in the X-model. The natural interpretation then suggests that 
the spinon found when studying the strongly correlated atoms alone, is paired up 
with the spin on the charge carrier. The additional charge carrier has separated into 
a spinon, which has paired up with the spinon associated with the odd-membered 
chain, leaving a spin-0 charged particle or holon. 

A more thorough understanding of this spinon and holon picture can be achieved 
using the ‘domain wall’ interpretation of spin-; Heisenberg interactions [SI. For 
a Heisenberg chain with an odd number of atoms a NCel state requires a pair of 
neighbouring parallel spins; a domain wall. The spinon is a delocalized domain wall. 
When we analyse our X-model ground state, the two special atom spins neighbouring 
the charge carrier are almost always parallel in the ground state. The domain wall 
in the 17-atom loop is located at the charge carrier. As the charge carrier moves 
around, so the domain wall moves with it, being bound to it. 

We have performed analogous numerical calculations to those so far presented 
for the case of two charge carriers. Once again an understanding is achieved through 
the study of conditional spin correlations. The details will be presented at a later 
date, but the physics is transparent. The ground state is still controlled by Heisenberg 
correlations. The two spins on the charge carriers become included in an augmented 
chain which has an almost precise Heisenberg ground state. The charge carriers 
delocalize and weakly repel each other. The repulsion is somewhere between that 
found in spinless fermions and non-interacting bosons. 

For the infinite chain with a mite density of charge carriers, the Heisenberg corre- 
lations for the augmented chain, with charge carrier spins included, will remain. The 
charge carriers will delocalize and weakly repel, but compared with spinless fermions 
they will be urtrucIed to each other. Although the conditional spin correlations will be 
Heisenberg correlations, the actual spin correlations restricted to the special atoms do 
not extend far. Each charge carrier includes a spinon into the special atom chain. The 
actual antiferromagnetic-spin correlations only extend as far as the average distance 
between two charge camers. 

Although the actual spin correlations are quickly destroyed by the charge-carrier 
motion, this does not mean that the Heisenberg energy is small. Indeed the actual 
Heisenberg energy is quite close to the optimum value in the absence of the charge 
camers. The reason is simple: the Heisenberg contribution does not affect the 
charge carrier and so the states on which the Heisenberg interaction acts are those 
corresponding to the conditional spin correlations, and Ulese correlations are locally 
very nearly the Heisenberg ground state. 

The X-model charge motion very nearly simultaneously diagonalizes the Heisen- 
berg interaction on the linear chain, although the long-range element to the an- 
tiferromagnetic correlations is severely curtailed and will be destroyed at very low 
doping concentrations. This is absolutely opposite behaviour to the much studied t- 
J model. For the a-J model there is a fierce competition, with the local correlations 
being energetically in opposition. 

The excitations found in the X-model are not well represented by the Heisenberg 
excitations. The motional energy is only weakly affected by distorting spins far from 
the charge carrier although the Heisenberg energy is severely modified. A lot more 
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effort is required in order to achieve some interpretation for the excitations. 
The physical systems are higher dimensional and are expected to exhibit rather 

different behaviour. The closed topological loops break the degeneracy of the short- 
range spin correlations and stabilize the local-spin correlations suggested by the rele- 
vant small-loop calculations of this section. A charge carrier now finds many possible 
paths open to it and there is a competition between all the possible paths and their 
preferred correlations. The spin on the charge carrier slill becomes involved in the 
spin state of the special atom system and the charge carrier itself delocalizes inde- 
pendently: the spin and charge degrees of freedom still separate. In two dimensions 
a special atom has more than two nearest neighbours. When a charge carrier per- 
forms motion along a path which passes across a particular special atom, the path 
usually involves only MO nearest neighbours. The spins along that path will exchange 
sublattices and this will break down the correlations between the particular special 
atom and the nearest neighbours which are nor traversed by the charge carrier. The 
Hekenberg spin correlations can be broken down completely by chargecarrier mo- 
tion which can induce quite different correlations at long distances. We believe that 
only short-range spin correlations survive. 

In the next two sections we will investigate the correlations induced in our two- 
dimensional planar examples numerically. 

3. A planar model for CeAI, 

3.1. Apptying Ihe model to C d l ,  

There are several important physical complications which are encountered in attempt- 
ing to describe CeAI, with the X-J model. 

The first and most important problem is the assumed dominance of the hybridiza- 
tion across aluminium atoms. The usual description for heavy fermion materials is 
the Anderson lattice [SI. The dominant hybridization is assumed to be between the 
conduction states with only a weak hybridization between the special atoms and the 
conduction states. The X-J model is the strong-coupling limit of the Anderson lattice 
for a rather different parameterization; when the conduction electron hybridization is 
negligible [9]. 

The second natural problem is spin-orbit coupling. Most rare earth atoms exhibit 
atomic physics properties even in the solid state, with the atom exhibiting only some 
values of the total angular momentum at low temperatures. Ekperimentally spin-orbit 
splitting can be easily measured with inelastic neutron scattering [lo], and for CeAI, 
it has been established that at the relevant temperatures the spin-orbit splitting is 
effectively complete with a well defined J = 8 ground state and a J = spin- 
orbit level at about 250 meV [lo]. The X-J model has spin decoupled from the 
orbital angular momentum, and whether or not thii simplification is sensible must be 
determined. 

The third physical problem is v6th the model itself. Fbr bipartite lattices the loops 
have even numbers of atoms which, with the charged particle itself, ensures an odd 
number of spins around a closed path and none of the resonant effects associated with 
the odd loops. the perovskite superconductors we find quantum paramagnetism 
as hoped and as will be discussed in the next section. For the geometry of figure 
1 we futd triangles which are the woml choice for paramagnetism with the resonant 
contribution Vigorously disfavouring low spin and preferring ferromagnetic coupling. 
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The resolution of these three physical problems are interelated and constitute our 
modelling of the material. 

The relevant electronic degrees of freedom on the aluminium atoms are s- and p- 
orbitals. As a first pass, let us ignore the p-orbitals and study the s-orbitals alone. The 
aluminium atoms form a Kagome nett, and the band structure for nearest-neighbour 
hopping on the Kagome net is ~(7~): 

~ ( 7 ) = 2 t  - t k J [ 3 ( 1 + 2 7 ) ] t  (2) 

which is depicted in figure 4, in terms of yL the structure factor for the cerium 
triangular lattice. The interesting feature is the Bat band at the top of the figure. In 
figure 5 we depict the phases of a localized state which forms this flat band. It can 
be orthonormalized to form a Wannier orbital if desired, in an analogous way to the 
treatment of the bonding combination of oxygen states in a CuO, plane [Ill. In the 
real materials this band w u l d  gain dispersion from the effects that we have so far 
ignored. 

0 O 

0 0 

0 + -  0 0 

+ - i 
! 

0 + -  0 0 

0 0 
. , L _ i  1 

-o., -0.1 0 6 , l  0.) 0,s 0.8 I 

l i*  . o  0 

Figure A The dispersion of a single tight bind- 
ing wrbilal on a Kagome "el. The vertical and 
horizontal axes are energy in units of the hopping 
matrix element and triangular lattice StmctuTe fac- 
tor, respedivelp 'Ihe i m p o ~ n t  feature is the flat 
band at lhe top of the spectrum. 

F@re 5 A localized wavefunction which gives rise 
lo lhe Ral bod  of figure 4. 

It is clear that the s-p hybridization will allow dispersion from nearest-neighbour 
hopping in the plane, next nearest-neighbour matrix elements will allow dispersion 
in the plane, and hopping to neighbouring layers will also induce dispersion. The 
possibility that we would lke to consider is that the dominant process is delocalization 
onto the cerium atoms. If this hybridization is to dominate these other effects, then 
it cannot be very small, and we must develop a new explanation for the reason why 
the charged particles are so h e a y  

t W believe lhal 'ffigome net' is the correct terminology. 
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Under the present assumptions we have a dispersionless ‘conduction s-band’ on 
the aluminium atoms which has perfect symmetry to hybridize with a 2(i? - 302) or 
sin3 0 cos 34 felectron on the cerium atom. Assuming that Ceat is energetically inac- 
cessible and that the dominant delocalization process is via intermediate virtual Ce4+ 
excitations, then we are led to the X-J model; equation (1) for h e  motion of charge 
camers on the aluminium atoms and superexchange across the aluminium atoms [9]. 

For the assignment Ce3+AI;, each aluminium atom would have four mlence 
electrons and then any selectrons above four-thirds per aluminium atom might be 
expected to be described by this model. We would naively guess that only a low 
concentration of electrons would be involved. 

If we take the present derivation at face value, then we are led to a resolution of 
the problem that triangles do nor promote low-spin correlations, the physical require- 
ment of the model. When we focus on a single triangle present in the geomey, an 
analysis of which of our one-dimensional loop calculations is analogous yields a sur- 
prise. We discover that the motion involves anliperiodic boundaly conditions around 
the triangle. There is a l o p o l ~ g i ~ ~ l  phase shifl around a triangle. The phases, 
conspire to enforce an extra change in phase for motion around each triangle. Hop- 
ping once around a triangle involves three changes of sign, at each cerium atom, and 
this converts the usual resonant cancellation preferring spin-1 into a superposition 
preferring spin-0, and this locally stabilizes the low-spin correlations, as we shall soon 
show. 

Our first task is to establish the energy scale on which the aluminium electrons 
become ‘bound’ to the f-electrons. This is the energy scale which must dominate the 
‘free-electron’ delocalization processes which are being ignored. 

If we consider a single cerium atom with one electron delocalized by the X- 
J model on the six surrounding aluminium atoms, then the ground state finds the 
aluminium and cerium electrons in a relative spin singlet at an energy of - 6 X ,  
with the nearest excited state at zero energy. Although the energy scale X may 
be relatively small, the local ‘Kondo’ singlet is stabilized by an extra factor of the 
coordination number in this case six, which is always very large in heavy fermion 
systems. We believe that it is this large coordination number which stabilizes the 
heavy fermion state and nor the large fdegeneracy as has previously been argued 
[5]. The fdegeneracy of the cerium atom is removed on a much larger energy scale 
than that on which the heavy fermion coherence and even the Kondo coherence are 
relevant. The atom is almost always effectively a doublet. 

In the Kondo effect, a conduction electron close to the Fermi surface becomes 
trapped in a relative spin singlet with an isolated localized moment. The energy 
gain stabilizing this state is the hybridization between the localized electron and the 
conduction states. A single aluminium electron in a relative spin singlet with a cerium 
electron is conceptually analogous, and plays the role of the ‘Kondo’ singlet in our 
model. The main difference between the two models is that the Kondo singlet in this 
article is short-ranged in real space. The reason for this requirement h elementary, 
the conduction electron hybridizes with the nearest local moments, and so singlet 
correlations beyond nearest neighbours are pointless. If the conduction electron is 
mobile and moves across several unit cells between interactions with local moments, 
then the description that results is free electrons combined with an RKKY interaction 
between local moments. The consequence is magnetism. We must avoid hir scenario 
at any cast. 

Our resolution to this problem is to allow the hybridization between the localized 
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electrons and the conduction electrons to dominafe. The relevant energy is vety small 
and so domination will be rare: heavy fermion behaviour ir rare. Fbr the present 
model the Kondo singlet is stabilized on the energy scale of ZX, where 2 is the 
coordination number between a special atom and its nearest-neighbour conduction 
atoms. It is clear that our desription is most likely to apply when the coordination 
number is large: heavy fermions always have a large coordination number (indeed for 
me,,, 2 = 24!). We believe that the X-model is the most likely limit of the Ander- 
son lattice in which to expect heavy fermion behaviour. The real justification for the 
model is in demonstrating that the behaviour that it predim is precisely that found 
in heavy fermion systems. In this article we Will show that the preferred spin coher- 
ence is wry short-ranged paramagnetism in basic agreement with the experimental 
systems. We will also show that spin-charge separation is quite natural, although the 
5 a l  consequence, that the charge carriers are almost non-interacting, bosonic and 
very heavy, is left to the future. 

At this point we should point out that the model finds the two particles exchanging 
spins very frequently while the orbital angular momentum is assumed fixed. The 
spin-orbit coupling is therefore not being favoured and we are assuming that the 
hybridization energy of -6X is dominating the spin-orbit coupling and stabilizing 
the local ‘Kondo’ singlet. Although this might be the case in some materials, it is 
clearly not true in &AI, which has well defined spin-orbit levels. The resolution 
to this contradiction is to assume that in fact the f-electrons actually reside in states 
with fixed Jz ,  Le. slight modifications to exp(+i34) /I) and exp(-i3+) IT), and suffer 
a reduced hopping rate into the orbitals with the relevant cos(34) symmetry. We 
would expect a simple reduction by a factor of about two in the matrix element X, 
but no real change in the form of the model. The fact that the spin-orbit splitting 
dominates does place an upper bound on the energy involved in the coupling which 
must be less than - 

The next important task is to try to understand the spin correlations amongst the 
surrounding cerium spins which allow delocalization of the electron on the aluminium 
atoms. It is the strong stabilization of local paramagnetic correlations which has 
motivated our study of the X-J model and the natural behaviour that it exhibits. 
Although it is clear that the X-J  model is an oversimplification, the model does 
involve strong coupling between chargecarrier motion and the spin system, and we 
hope mat it exhibits behaviour of some relevance to heavy fermion systems. 

eV 

3.2 Numerical simulations of the X-J  model 

The results of section 2 provide the behaviour to be expected. The smallest loop 
is a hiangle and the local phase relationship from circling the loop is equivalent to 
anti-periodic boundary conditions. This is a critical result in deciding the resulting 
spin coherence: when an electron Circuits a loop, it picks up three phases, Le. 4j j  - 
~ 5 ~ ~ ,  = T ,  from the f-orbitals on the cerium sites. This leads to anlipricdic boundary 
conditions for locally circling a triangle. If this argument had yielded local periodic 
boundary conditions, then the resulting spin coherence would have been ferromagnetic, 
in agreement with Nagaoka and RKKY, and in direct contrast to the desired result 
The motional energy for the charge carrier is optimized on a triangle when the three 
spins on the cerium atoms and the spin on the aluminium electron are found in a 
total spin singlet; low-spin correlntions are preferred. The energy gap to the lowest 
lying excitation is large being of order X so low spin is stabilized quite strongly. 
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The transition from one to two dimensions involves some new phenomena. In 
the absence of double occupancy of oxygen atoms, the spin degeneracy of the copper 
chain remains unbroken for the infinite chain. Whatever the spin configuration the 
charged particle can only hop to its two neighbouring sites and these hops can be 
optimized independent of the spin configuration. In two dimensions we have small 
topological loops together with a multiplicity of connections for the atoms surrounding 
a special atom. 

If we consider aU the atoms which surround one special atom, then a charge 
carrier on any atom can hop to any other atom across the special atom. This is the 
highest degree of connectivity possible and produces the strongest topological effects. 
Fbr the present case it leads to the stabilization of the local spin singlet on the ZX 
energy scale, where 2 is the amdination number of the special atom. 

The next consideration is topological loops and it is motion around loops which 
tends to decide the spin coherence amongst the special atoms at a slightly greater 
distance from the charge carrier. Fbr the prescnt case we find antiperiodic boundary 
conditions around triangles which suggests low-spin correlations. It B important to 
appreciate that the stability of the local singlet does not guarantee paramagnetism. 
A study of periodic boundary conditions on the present lattice suggests that ferro- 
magnetism is preferred far from the charge carrier, as is usual in the corresponding 
problem for the Hubbard model [12]. The p-orbitals which couple directly to the f- 
electrons would each supply an additional phase as a triangle is circled, which would 
convert the local boundaly conditions back to periodic boundaly conditions around a 
triangle suggesting local ferromagnetism, although the relevant states are unlikely to 
be close to the chemical potential. 

We have studied the case with local periodic boundary conditions in some detail. 
Indeed, a closed form equation for the ground-state energy of the single-charge carrier 
problem is given in equation (4). The corresponding state is rather more subtle than 
that predicted by the Nagaoka problem. The Kondo interaction forces the existence 
of a Kondo singlet. However, the singlet is tightly bound to the charge carrier and 
the compi le  object delocalizes best in a ferromagnetic background. 

The basic phenomena at work are straightfonvard but the correlations which 
result are not clear at all. Even the quantum mechanical Heisenberg model is as 
yet unsolved. For bipartite lattices long-range Nkel antiferromagnetism is believed 
to result, although with a much reduced moment from the classical solution. The 
present lattice is an antiferromagnetically frustrated topology, and it is now known 
that for some such lattices the classical ground state is destabilized and replaced by 
quantum paramagnetism [13]. Indeed this is a possible explanation for the lack of 
antiferromagnetic order in CeAI,. The classical solution for the Heisenberg model on 
the hiangular lattice yields non-collinear antiferromagnetism with three sublattices, 
all nearest neighbours at 120’ and all next-nearest neighbours parallel. This type of 
order is relatively easy to find if present. 

The charge motion prefers local ‘Kondo’ singlet formation and delocalizes best 
on a paramagnetic background. The key issue to resolve is the type of paramagnetism 
which is locally preferred. In order to try to address this problem we have numerically 
investigated some small clusters with periodic boundary conditions. We have restricted 
attention to odd numbers of special atoms in order to allow total spin-0 solutions and 
no necessity for a ‘spinon’. The ground state has zone-centre phase coherencc and a 
low total spin. 

The exponential growth of the number of degrees of freedom with system size 
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means that we are restricted to very small clusters. The use of periodic boundary 
conditions includes additional loops into the connectivity which can dominate in tiny 
clusters introducing anomalous behaviour. The cluster size to which we are restricted 
is still being severely modified by these additional loops, which must be. included in 
any interpretation. 

Our calculations on the linear chain indicate that even at this level we might 
discover the important effects. The Secrets of the linear chain were uncovered by a 
study of the condilional spin correlations. The spin correlations were Heisenberg-like, 
with a modification in the Vicinity of the charge carrier to enhance the probability 
that it is in a singlet with its two neighbouring spins. This enhancement takes place 
at the expence of the nearest-neighbouring pair of spins. 

A typical collection of nearest-neighbour ground-state conditional spin correla- 
tions are depicted in figure 6. The spin correlations on the ten special atoms around 
the charge carrier are common to all the clusters for which the atoms are indepen- 
dent. The low-spin correlations far from the charge carrier are strongly dependent 
on the boundary conditions and do not involve much energy, being severely modified 
in the excited states which are only about 1% higher in energy at this order. 

These spin correlations are easy to interpret: first there is the enhancement of 
the singlet character of the charge carrier with its nearest-neighbour spins that we 
found for the linear chain. Second, the resonant contribution from the charge carrier 
circuiting one of the two aiangles on which it is located ensures that the singlet 
probability around these two triangles is enhanced in comparison with the other 
possible routes that the charge carrier can maverse. The singlet probabilities for 
pairs of spins next to the charge carrier are reduced in order to compensate for the 
enhancement at the charge carrier. Finally, the spin correlations on the eight a tom 
surrounding the charge carrier and its two neighbours have high singlet probability 
in order that the charge carrier has a high probability of arriving in a singlet with its 
neighbours when it arrives. 

When we ay to analyse the absolute correlation functions we encounter several 
interpretational difficulties. Fust, for most clusters, the boundary conditions break 
the p i n t  group symmetry yielding preferential directions for motion. The spin cor- 
relations vary quite dramatically in different directions and averaging oyer the point 
group appears to be the only way to extract results for comparison with the infinite 
system. Second, for most clusters, pairs of atoms fulfil several roles, being simultane- 
ously next-nearest and third-nearest neighbours to the same atom for example. Thud, 
the small size of clusters restricts attention to only about third-nearest neighbours, 
and very little can be deduced about the infinite system &om such results. Accepting 
the complications, the results suggest that the nearest-neighbour correlations achieve 
a substantial fraction of the ground-state Heisenberg bond energy and that the more 
distant correlations are small. Some selected results are presented in table 2 There 
is no evidence whatsoever for classical antiferromagnetism which would show up as 
triplet correlations amongst next-nearest neighbours. 

The underlying lattice for these calculations is the triangular lattice. The topolog- 
ical frustration strongly weakens the energy gain from classical ordering and it is not 
clear whether the ground state has long-range magnetic order. The present results 
are consistent with a ‘resonating valence bond’ [SI state being preferred by charge 
motion. We will attempt some plausible analytic interpretations in section 5. 
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R p r e  6. Nearest-neighbour spin wrrelations wnditional on the charge carrier k i n g  
fKed between the two starred atoms. n e r e  are 17 aloms with periodic boundary 
wnditions. "be top shle is h e  spin-1 ground stale at energy -8.0234X and the lower 
state is the lowest lying spin4 state at energy -8.0214X. The 10 atoms surrounding 
the charge mmer have similar wrrelations to those found in dl our calculations The 
wnneclivity induced by our periodicity dearly promotes motion in four of the six pomible 
directions. which is not expecled [or the infinite system, and wries @om duster to cluster. 

A The perovskite superconductors 

The derivation of the model for this case is now well established [14], and so we Will 
only discuss our numerical study. Bipartite lattices have no odd loops and so the 
resonant effects are very small in comparison to those for the triangular lattice. The 
complications from the loops included in our periodic boundary conditions are much 
more important for this case since any odd paths included can easily dominate, We 
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lhhk Z A seledon of calculations on Viangular lattice clus1er~ with periodic boundary 
mndilions on the edges, but varying boundary mnditions amund Uiangles. When ground 
slaIes are degenerate we did not always calculate the mrrelations. lXe ground stale 
is almost unaffected by the inclusion 01 sirongaupling interactions M the mnduction 
atoms, whereas in one dimension the inclusion breaks b e  degeneracy. Anliperiodic 
boundaiy mndilions lead U) a lw-spin ground slate a1 energy - -8X (or - -7.2X 
when the mnduction atoms are strong coupling). Periodic bundaiy mndilions find one 
magnon b u n d  to the charge camer and all the other spins parallel in a ferromagnetic 
gmund slate at energy U - 8 . 2 X .  

N BCs S Up X-model First Second Third 
ground- nearest- nearest- nearest- 
slate neighbour neighbour neighbour 
energy correlation mrrelation "e la t ion 
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0 
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m 
m 
m 
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m 
03 

0 
0 
0 
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0 
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-7.5414 
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-7.8655 
-7.7608 
-7.9864 
-8.0705 
-8.0734 
-8.0214 

-8.OWO 
-7.1241 
-6.7876 
-6.3723 
-63687 
-7.0545 
-6.9976 
-6.9708 
-6.9668 
-7.1307 
-7.1590 
-7.1688 
-7.1638 

-7.6847 
-8.0664 
-8.2621 
-8.2222 
-8.2291 
-8.2104 
-8.2115 
-8.2131 

-0.0831 
-0.1336 
-0.1071 

-0.0878 
-0.1049 
-0.1440 
-0.1157 
-0.1362 

-0.2500 
-0.0890 
-0.1384 
-0.1072 
-0.0610 
+0.0442 
-0.1392 
-0.1764 
-0.0863 
-0.1033 
-0.1438 
-0.1148 
-0.1345 

- 

- 
+0.1550 
+0.1797 
+0.1%6 
f0.2060 
+0.2131 
+0.2181 
+0.2217 

- 
- 
- 

-0.1071 

-0.0366 
-0.0104 
+0.0067 
-1-0.0145 

- 

-0.0034 

- 
- 
- 

-0.1072 
-0.0610 
+0.1910 
+OS943 
+OS959 
-0.0379 
-0.0121 
+0.0088 
+0.0123 
-0.0042 

- - 
f0.1797 
+0.1928 
+o.m9 
+0.2116 
+0.2167 
f0.2207 

- - 
- 
- 
- 

-0.0525 
-0.0104 
+0.0673 
-0.0012 
+0.0258 

- 
- 
- 
- 
- 

+0.0442 
- 0.1392 
-0.1764 
-0.0528 
-0.0121 
f0.0667 
-0.hw4 
+0.0278 

- 
- 
- 

+0.1966 
+0.2050 
+0.2116 
+0.2168 
+0.2209 

have two choices; first we can accept the boundary condition complications and hope 
that the system size is adequate. Second we can use bipartite boundary conditions 
and tackle their associated problems. We have tried both options. Selected results 
are presented in table 3. 

There are two complications associated with the choice of bipartite boundary 
amditions; first we require an even number of atoms, and with the addition of the 
charge-carrier spin this necessitates a spinon. Second this spinon tends to have a 
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'hbk 3. A selection of c4culations on 4uare lattice dusters with periodic boundary 
mnditionb Daggered slates have a Fermi -face wdveveC(0r and all others have a 
zaneCentre WaveVCetor. The gmund state has  low spin. The singlc bund magnon slate 
has energy -5.324X and so lhe low-spin State is only stable by Y X/5. 

N S UP X-model Firs Semnd Third 
ground nearest nearest nearest 
state neighbour neighbour neighbour 
energy mrrelation mrrelation mmlation 
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-4.4244 
-5.3779 
-5.3027 
-5.0292 
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-5.4317 
-5.4396 
-5.5039 
-5.4824 

-4.6056 
-3.7283 
-4.5529 
-4.4748 
-4.2277 
-4.5765 
-4.5793 
-4.5812 
-4.6155 
-4.6122 

- 5.2961 t 
-5.2915 
-5.1955t 
-5.1955 
-5,37161 
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-1.3663t 

-4.4509' 
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-4.38191 
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-45319t 
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to.1529 
-0.15w 
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-0.2484 
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+0.1320 
-0.15w 
+0.1673 
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-0.1701 
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-0.0450 
-0.1293 
-0.2261 

+0.0595 
t0.1993 
+0.0109 
+0.0109 
-0.1W7 
-0.0373 
-0.1295 
-0.1206 

+0.0436 
t0.1915 
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-0.1 186 

i ~ ,  , ,  - - 
- - 
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-0.0498 - 
-0.0703 - 
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- - 
- - 

t0.3676 - 
-0.1109 - 
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+O.W7 -0.1674 
-0.0191 -0.0145 
t0.0275 -0.0457 
+O.W86 -0.0204 
t0.0687 tO.Wl7 

t0.0976 +0.0097 
t0.1824 t0.1824 
-0.1095 -0.OllO 
-0.2081 f0.1861 
+0.0414 -0.w52 
t0.0382 t0.0383 
+0.0391 -0.0791 
-0.mo -0.1043 

+O.lWS t0.0227 
t0.1720 +0.1720 
-0.0982 -0.0053 

t0.0447 +0.0@4 
-0.0694 t0.1056 
+o.w52 -0.0999 

-0.1910 ~ ~ tO.leQ5 

wavevector associated with the non-interacting Fermi surface. The degeneracy of 
the Fermi surface is high, and analogous to the effects involved in Hund's rules of 
atomic physics, the degeneracy is lifted by exchange, which promotes ferromagnetism. 
Even though the charge motion promotes lowspin correlations, there is a non-trivial 
number of spinons in the ground state which confuses our interpretation of the cluster 
calculations. This Fermi surface degeneracy is not relevant for the infinite system, 
since as the system size increases, this moment scales only with the length of the 
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Fermi surface and this is macroscopically irrelevant. The behaviour of the spins close 
to the charge carrier is similar to that for the non-bipartite boundary conditions, 
although the wavevector of the state leads to a preferrecl direction of motion. 
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Figure 7. Nearest-neighbour spin mrrelations mndilicnal on lhe charge carrier being 
k e d  between the two stamd atoms. There are 15 atoms with periodic bounday 
mnditions The mnduction atoms are also assumed strong mupling for this case. The 
top state is the spin-l ground Slate at energy -4.6155X and the lower state is the lowest 
lying spina -le at energy -4.6122X. The mrrelations are quile typical. The m n d  
slate has a fair quantily of N&l correlations 
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A typical collection of conditional spin correlations are presented in figure 7. The 
interpretation is perfectly analogous to that for the triangular lattice. The singlet 
correlations between the charge carrier and its nearest neighbours are enhanced at 
the expence of the neighbouring correlations. The more distant correlations are 
strongly singlet in order that the charge carrier is more likely to arrive in a singlet as 
it moves about the lattice. 

5. Analytic interpretations 

In this section we make an attempt at introducing an interpretation for the results that 
we have found. In no way should one view this section as being the QC?UQI solution, 
but by analogy with the way that the classical Nkel state describes the physics of the 
quantum antiferromagnet, we believe that the states suggested in this section will 
yield the physics and even the actual solution after a few ‘quantum fluctuations’ are 
included. 

As has previously been discussed, the non-bipartite system is easier to understand 
in the vicinity of the charge carrier, because the inclusion of the spin degree of 
freedom on the charge carrier increases the effective length of the loops on which it 
sits by one, converting them locally into bipartite loops. The aiangles of section 3 
are increased locally into squares. A local Nee1 ordering on the resulting square then 
fully optimizes the charge motion around the triangle. 

The key complication for the two-dimensional systems is the multitude of different 
paths that the charge carrier can take and the resulting differences between the spin 
correlations which result. Which paths are the preferred paths? Although there are 
many routes open to the particle, the ground-state energy indicates that only a certain 
fraction are used. An electron on an aluminium atom neighbours two cerium atoms. 
The electron can hop across each cerium to the six aluminium atoms which neighbour 
that cerium atom. This yields huelve possible hops in all. The numerical calculations 
show that the ground-state energy is approximately -8X, and so one-rhird of the 
possible hops do not lead to coherent motion and are avoided by the electron. In 
this section we attempt to understand which paths the electron chooses, and the role 
of the spin correlations in that choice. 

The basic idea can be grasped with a study of a single cerium atom and its six 
neighbouring aluminium atoms. The spectrum for an electron moving with the X- 
model on this geometry finds a singlet ground state at - 6 X ,  but the nearest excited 
state is at zero energy. Any local triplet configurations necersilafe a huge loss in energy 
and lead to highly excited configurations. Further, the zero-energy excitations involve 
non-bonding combinations which are not bee to delocalize. The key to the X-model 
is to ensure that delocalization is into Kondo singlets, as far as is possible. We will 
present states composed of preckeb the correct spin correlations to ensure this. 

The states that we would like to propose as an interpretational aid, are those 
where the charge carrier is in a spin singlet with one of its nearest-neighbour spins and 
all the remaining spins are paired up in nearest-neighbour singlets. The Hamiltonian 
connects each such state to seven other such states directly. There are six matrix 
elements across the spin with which it is singlet correlated, together with one hop 
across the other nearest-neighbour spin in the direction of the spin which happens 
to be paired up with that spin. The connectivity and topological phases conspire 
to ensure that d l  seven of these hops can simultaneously contribute in phase if the 
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relative phases of a superposition of all the different spin configurations is chosen 
mrrectly. The resulting estimate of -7X  is quite close to the numerical bound which 
appears to be around -8X. The state comprising of an equal superposition of all the 
spin configurations with nearest-neighbour singlet pairs that a single charge carrier 
can get the spin background into with negative phase hops, is the state from which 
we believe that the physical insight into the bue solution can be deduced. 

In order to try to justify the use of the proposed wavefunction, we should first 
look at the five hops which have hitherto been neglected. All the neglected hops lead 
directly to spin configurations with singlets of longer mnge than nearest neighbours, 
but it is important to realize that the valence bond description so far described 
involves an important complication; non-orthogonalify. Different valence bond spin 
configurations have non-trivial overlaps and can be simultaneously describing the same 
physics, which complicates matters. The Seven hops so far discussed are unaffected 
by the non-orthogonality problems since each state is produced precisely seven times 
in an application of the Hamiltonian and so provided the superposition does not 
vanish we find an energy of -7X  from these hops. Although the construction that 
we have described only involves states with nearest-neighbour spin correlations, a 
Linear superposition of such states can involve valence bonds of any length. The five 
extra hops lead to spin configurations with longer range singlets, but the new states 
have non-zero overlaps with the original basis and hence can contribute directly to 
the energy of our starting wavefunction. 

A critical observation is that it is impossible not to avoid some triplet character 
and therefore impossible not to lose some Kondo energy. An electron cannot be in a 
spin singlet with bofh of its nearest-neighbouring cerium atoms simultaneously. The 
trick is to ensure that it only delocalizes into Kondo singlets. 

In order to tly to understand the role of the five extra hops, it is convenient to 
take the states in our nearest-neighbour basis in pairs. The pairs of relevant states 
are those which are connected together by the seventh hop, where the charge carrier 
ends up being in a spin singlet with a different special atom. An application of 
the Hamiltonian to these pairs is depicted in figure 8. It is helpful to analyse the 
relationship between the spin correlations and the relative phase of our initial states: 
clearly the electron is in a spin singlet with one nearest-neighbour cerium atom and 
can gain Kondo energy from delocalizing about that atom, but what about the other 
cerium atom? If the electron is in a relative aiplet, then it is non-bonding and cannot 
delocalize. If the electron is in a relative singlet, then it is bonding and delocalizes 
into a Kondo singlet. This is precise& the content of figure 8. The final contributions 
are cancelling contributions which can be attributed to the situations where the charge 
carrier is in a spin triplet with the other neighbouring spin. The non-orthogonality 
complicates this picture badly since there is even an overlap between the two pictured 
contributions! Note, however, that if the breakdown of the hopping energy includes 
the seventh hop in this contribution, then the final term disappears and we are left 
with the pure Kondo singlet combined with the longer range singlet combinations. 

Let us focus on the fust case where the charge carrier hops through an angle of 
60°. The states that result are elements of the original basis. Further, the phase is 
such that these contributions add constructively, decreasing the hopping energy. This 
is the resonant superposition alluded to in section 2 Since we are considering a pair 
of original states, there is a maximal addition of WO new hops for each state which 
yields a lower bound of -9X for the ground-state energy. This bound is a rigorous 
bound, and can be proven by showing that the maximum simultaneous probability that 
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e - h  - ~ U - h  - 
H = (-1) (+I  

-, 1- -, I,-, 

mutt S A diagrammatic rcprfsentation lor the five hops not included direclly in an 
application of the Hamiltonian U, our interpretational wavcfunclion for the lriangular 
latlice. ?he charge =mer is denoted 5 h,  a singlet mnliguralion is denoted bj a line 
with an encircled end, and a bar denotes lhe opposite sign to the contribution. 

the spin on an electron is in a singlet with borh of its neighbours is three-quarters 
each. Coherent motion for all singlet configurations yields 2 x (-12X) = -9X, and 
all triplet contributions must be non-bonding and contributing nothing. This bound 
is achieved for the three atom per unit cell periodic boundary conditions calculation, 
but it is reduced to about -8X for the infinite system when the 120’ and 180’ 
contributions are required. The role of the extra hops for pairs at 120° and 180°, 
is analogous to that for quantum fluctuations in the NCel description of quantum 
antilerromagnetism; they distort the picture locally leading to a ‘softening’ of the 
picture but they achieve a corresponding gain in hybridization energy. 

There are WO important ways that the extra hops contribute. First, the states 
depicted in figure 8 are not orthogonal to our starting state and hence contribute 
directly to the energy. For the first time there is a cancellation which reduces the 
ground-state energy. The hop where the charge carrier remains immobile contributes 
a loss of X/2 which corresponds to the ratio of probabilities that there is a triplet or 
singlet spin configuration; three-quarters of the time the charge carrier is in a triplet 
with the exchanged spin yielding 3X/4 and one-quarter of the time they are in a 
singlet yielding -X/4. There are also smaller overlaps with the other states in our 
original interpretational wavefunction which furIher complicate the picture and these 
will be examined later. Second, the hybridization into the states depicted in figure 8 
will induce a higher probability of finding them and a corresponding gain in hopping 
energy. 
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It must be bome in mind that the contributions from both 60' hops and non- 
orthogonality will lead to a preference of some spin configurations over others, and 
this will destroy the assumption that we want an equal superposition of states with 
nearest-neighbour singlets. Our interpretation of the spin correlations in section 3 
suggests that the preference for 60' h o p  is a strong effect and leads to the enhanced 
probability for the charge carrier to reside on a Wiangle with two special atoms in a 
total spin singlet. On the other hand, the inclusion of the states depicted in figure 8 
promotes triplet correlations for the two spins which neighbour the charge carrier, and 
this triplet character is strong, which suggests that this hybridization is also relevant. 
In the numerical calculations, we did observe that the lower the total spin of the 
state, the weaker the triplet character of this bond. Most of the triplet character can 
be explained by the spin configurations with the charge carrier on a triangle with a 
pair of special atoms in a spin singlet, since for these cases the bond is expected to 
be fully triplet. The residual triplet character might also be explainable in terms of 
correlations induced by the particular superposition imposed in our interpretational 
wavefunction, a point which remains unclear. 

One of the weaker effects so far discussed is the non-orthogonality between the 
new states depicted in figure 8 and the states in our interpretational wavefunction. If 
we ignore the superposition complication, then for the largest overlaps we find overlap 
matrix elements of size (-1)"2'-"X, where 71 is the number of non-identical singlets 
in a comparison between the two states. When n = 2 we find X/2 which is the 
cancellation previously mentioned resulting from the high probability that the charge 
carrier is in a spin triplet with one of its nearest-neighbour spins. This contribution 
is included in our discussion of 60' hops and reduced the bound on the hopping 
energy to -9X. Indeed for these contributions the triplet-spin configurations exactly 
cancel out leaving only the singlet hops which are all completely in phase with each 
other. The contribution from 120' and 180' hops is a penalty not so far included, 
but this contribution is reduced when the states of figure 8 are allowed to appear 
in the ground state. The next strongest contribution yields matrix elements -X/4 
and decreases the ground-state energy. The overall contribution from this source is 
difficult to quanttfy, but we feel that it is probably small. 

The interpretational wavefunction that we have presented probably has a wria- 
tional energy around -7X. Figure 8 gives a very precise description of the effects 
neglected, and one might then ask why these effects are not then included variation- 
ally, resulting in a test of how good the description is. The reason is elementary but 
crucial; the non-orthogonality is such an extreme complication that including any new 
state wriationally is beyond the technical expertise of the author. Even evaluating 
the overlap between the states in figure 8 is too difficult. 

Although an analytic treatment of our interpretational wavefunction appears too 
difficult, one might expect to be able to test the wavefunction on the clusters used in 
our numerical work. Even this analysis appears to be too difficult due to a mixture 
of combinatorics and the requirement that the relative phase of the contributions 
is chosen correctly. However there is a numerical calculation that we can perform 
to achieve some insight. The relative phase of contributions is easy to lind along 
a path that the charge carrier traces out. We have constructed states by taking an 
equal superposition of periodic nearest-neighbour paired states which correspond to a 
prescribed path, combined with an average over all six positions of the charge carrier 
around the special site with which it is in a relative singlet. A single state achieves 
an energy of - -5.5X, and a random path achieves an energy of -6.5-7.OX. If 
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we further choose a path that favours 60° hops, we can easily achieve an energy of - -7.4X, which is over 90% of the ground-state energy. The spin correlations of 
such a state are very similar to those of the ground state, with the major differences 
being a higher probability of finding the charge carrier on one of the three conduction 
atom sublattim, attributable to a biased path, and slightly higher nearest-neighbour 
singlet correlations, as might be expected. Partially optimizing the energy in the 
singlet subspace where all nearest neighbours are paired, leads to the ground state 
itself or to a state with an energy only 2% above the ground state energy for our 
small clusters. 

The interpretation of this section seems restricted to being a pictorial aid rather 
than a calculational procedure. Even the long-range characteristics of the spin corre- 
lations remain questionable. The energy associated with long-range order in this type 
of model is very small, and our interpretational wavefunction without any long-range 
correlations may well achieve long-range order when the 'quantum fluctuations' are 
included. The analogous situations for the Heisenberg model indicate that long-range 
aspects are immensely difficult to discover without an exact solution. 

Perhaps the most difficult point to understand is why we believe that the physics 
is described by our variational wavefunction. At first sight, the 120' and 180' hops 
depicted in figure 8 yield states with Kondo singlets which could play an important 
role in the ground state. The critical point is that much of their content is already 
included and the orthogonal contribution is at higher energy involving more energet- 
ically unfavourable triplet correlations. This can be rigorously proven for the linear 
chain geometry 1161, where the Heisenberg ground state controls the physics and the 
first orthogonal states, which are analogous to the new spin configurations here, are 
at least +4X higher in energy. 

Before we move on to the more difficult corresponding analysis for the square 
lattice, we would like to analyse the behaviour of the state corresponding to Nagaoka's 
[12] solution to one charge carrier moving in a strong-coupling Hubbard model; the 
single-bound-magnon problem. 

This problem arises quite naturally in the S - J  model. When the tight binding 
model for perovskite superconductors was first being analysed, there was a claim that 
the strong-coupling limit was identical to that for the square lattice Hubbard model. 
The justification was that an added hole would prefer to form a local singlet configu- 
ration with its neighbouring copper spin. The resulting object would be stable at low 
energies and would then move around the lattice in an analogous way to a vacant 
site in the strongcoupling Hubbard model. Nagaoka showed that in the absence of 
Heisenberg interactions a single hole moving under the action of the strong-coupling 
Hubbard model drives the spin background into a saturated ferromagnet 1121. For the 
X-J  model an added hole does want to form a local singlet configuration and so it 
is quite natural to study the motion of thii singlet under the action of the X-model. 
If the assumption that the strong-coupling Hubbard model were equivalent to the 
X-J model is correct, then we would expect Nagaoka's result to apply. In fact we 
discover exacrty h e  opposite results to Nagaoka. 

Nagaoka suggested ferromagnetism for bipartite lattices and not ferromagnetism 
for non-bipartite lattices with positive hopping matrk elements. We find ferromag- 
netism where paramagnetism is predicted and paramagnetism where ferromagnetism 
is predicted. 'lb demonstrate these results we have solved the problem of one hole 
which has captured one magnon (or spin-nip) moving around in an otherwise ferro- 
magnetic background. 
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There are two ways to do the calculation. Fit one can note that the magnon 
is tightly bound to the charge carrier and perform a variational calculation for states 
with increasing magnon4harge carrier separation. Secondly, one can evaluate the 
Green's function for the case of saturated ferromagnetism and use it, in combination 
with an impurity calculation to describe the states where the magnon is involved, to 
evaluate an exact expression for the energy. The resulting closed form solutions are: 

1 ( -c )dx  
J [ 6 -  e ~ 3  f ( 2 c -  1 ) 2 ] J [ 6  - c T 3 3 ( Z c +  1)*] - C(c) = 

for the triangular lattice with periodic (top sign) and antiperiodic (bottom sign) 
boundary conditions around a triangle, where c = cos(7rz) and y is the normal- 
ized structure factor for the triangular lattice. The resulting dispersions are depicted 
in figure 9. The numerical results indicate that periodic boundary conditions around 
a triangle yield the single-bound-magnon state as the ground state, but that anti- 
periodic boundary conditions around a triangle yields paramagnetism by at least an 
energy of X. The corresponding calculation for the square lattice has been published 
in a previous article 121. The closed form solution being 

1 F i p m  9. Ihe dispersion relationship tor the single- 
bound-magnon problem. The venical and horizon- 
la1 axes are energy (in unils of X) and lhe Viangu- 
lar lattice structure lador, respectively. The cuwe 
which mrresponds to periodic boundary conditions 
around a triangle yields a p u n d  stale at the mne 
centre, but the cuwe which " s p u d s  to antiperi- 

ground state of the system which is paramagnetic. 

Periodic 

odic boundary conditions is about X above the true 
1 

We now move on to an analytic interpretation for the square lattice. The basic 
idea is identical to that for the triangular lattice, but the bipartite nature of the 
square lattice presents severe complications. Our interpretational wavefunction is 
constructed by pairing up the charge carrier and one of its nearest neighbours into 
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a singlet together with all the other spins in nearest-neighbour singlet pairs. The 
charge carrier is then allowed to move by single hops to other states where all the 
spins are in nearest-neighbour singlets. The interpretational wavefunction is an equal 
superposition of all such connected spin configurations with the relative phase chosen 
so that all hops have negative phase. This choice ensures that five of the hops are in 
phase suggesting an estimate of -5X, together with three extra hops which conspire 
to provide the final half a hop. 

So far the analysis is analogous to the hiangular lattice case, but the state con- 
structed does have a crucial difference; not all configurations are connected by direct 
hops. In fact the charge carrier is only ever in a spin-singlet configuration with spins 
on one of the two sublattices. The effect of the three extra hops is depicted in figure 
10. As well as the cancelling contribution arising from the nearest-neighbour triplet 
configurations, we find states with the charge carrier in a singlet with a spin on the 
other sublattice. There is no possibility of finding the resonant contributions which so 
strongly stabilized paramagnetism on the triangular lattice. This lack can be traced 
to the fact that there are no odd loops in a bipartite lattice. 

P - h  

H 

i 

,* i 
- 

i 

*re 10. A diagrammatic representation [or the three hops not included directly in 
an application of the Hamillonian Lo our interpretational wavefunction for the quare 
lattice. The symbols are Ihe same as in Ggure 8. 

One comparison which highlights the difference is the stability of paramagnetism 
over ferromagnetism. Comparing our numerical results with the single-bound-magnon 
problem, we find that paramagnetism is stable by about X for the triangular lattice 
but only by about XI5 for the square lattice. Our interpretational wavefunction is a 
much better description for the triangular lattice where the effects are stronger. 

There are WO of our interpretational wavefunctions for the square lattice and 
the extra hops act in a sense as a coupling between them. Variationally there is 
never a coupling between them, but the extra hops lead to a coupling for the true 
ground state. One way to measure how strong this coupling is, is to observe that the 
two spins which neighbour the charge carrier are decorrelated for our states. The 
extent to which this pair becomes triplet measures the distortion from mixing. In our 
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simulations this pair is fairly triplet but not as strongly triplet as for the triangular 
lattice. 

6. Conclusions 

Although the application of the X-J model to the perowkite superconductors is 
straightfoward, the relevance to heavy fermions is no1 so clear. The processes which 
delocalize the conduction electrons are almost certainly stronger than the energy 
scale, X, which promotes the behaviour described in this article. There are several 
possible explanations: first the model may not apply and the dominant process is 
the conductionelectron delocalization. The only argument against this scenario is 
to ask why a simple my-induced magnetism does not then result? Second it may 
be. that fortuitously the delocalization processes ‘cancel out’ leaving the X-J model 
dominant. We do not believe this. Third, there is a type of renormalization argument. 
If we only elect to use electrons quite close to the Fermi surface, then the energy 
scale, X, can dominate and we might be led into the regime where the model 
applies. Since we only require a few electrons to dominate many spins for this model, 
this argument may not be too gross, since it does avoid the Nozibes paradox [15]. 
hur th ,  there is a very important new consideration that applies when a significant 
concentration of charge carriers are considered. We will look at this consideration in 
some detail. 

The behaviour of many charge cam’ers in thk model k usual& more boson-like 
rhun fermion-like. The resulting avoidance of Pauli exclusion could then explain the 
stability and a condensation argument might also explain the superconductivity. The 
basic reasoning has been explained elsewhere 1161 and we will only provide some 
intuitive explanation here. There is clearly only one type of charge carrier involved in 
our triangular lattice description. Further, this charge carrier has no spin degree of 
freedom associated with it. When two such charge carriers come together, they can 
actually sit on the Same site, in a relative singlet. There is, however, a minor ’hard 
core’ repulsion from the unavoidable probability that they are in a relative triplet. 
The particles cannot be considered as non-interacting, only as weakly interacting. 
The boson-like characteristics are found when two charge carriers are exchanged. If 
the charge carrier is always in a relative singlet with a nearest neighbour, then the 
exchange of two charge carriers involves an exchange of‘the two relevant singlets, and 
each singlet involves two particles. Two fermions make a boson and so if the exchange 
is made without breaking a singlet, exchange is bosonic in character. Another way 
to understand the result is to observe that, although thi: charge carrier is mobile, the  
underlying spins on the lattice do not move appreciably. When two charge carriers are 
exchanged, there is no corresponding exchange of electrons, and so no corresponding 
statistics requirement. A mathematical demonstration of this idea can be derived for 
the states developed in section 5 (161. 

If the relevant electrons make me of the delocalization processes, then they retain 
their spin degree of freedom and meet as fermions. Fermi statistics ensures strong 
dispersion and some electrons fare better than others. If the electrons move via 
the X-model, then subject to a weak ‘hard core’ repulsion they can independently 
gain the full delocalization energy &om their X-model motion. The low-spin state 
described in this article is strongly stabilized by an increasing concentration of charge 
amers .  This interpretation is certainly consistent with the behaviour of the perowkite 
superconductors. 
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In this article we have shown that, provided the smallest loop is not a triangle with 
periodic boundaly conditions, then the X-model promotes a form of strong-coupling 
paramagnetism. A charge carrier dominates about five to ten special atom spins in 
its vicinity with the more distant spins readily distorted at a small cost in hopping 
energy. The spin correlations may be understood in terms of a linear superposition 
of states with only short-range singlets; a resonating valence bond state. The spin 
correlations appear U) be much shorter range than in similar Heisenberg models. 

Although it has previously been suggested that this model exhibits the same be- 
haviour as the t-J model [l], as far as the charge motion is concerned we find 
opposite behaviour; where the t-model promotes ferromagnetism the X-model pro- 
motes paramagnetism and vice versa. 

':or the future, the next crucial feature which requires investigation is the coher- 
ence ?,tween charge carriers, and whether or not their behaviour is best represented 
by Bose statistics. 
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